Live Domain Technology Gaps and Science and Technology (S&T) Insertion Brian Kemper PM TRADE Chief Engineer 18 June 2015 ### **Live Domain S&T Focus** ## Live Domain Programmatic/Technical Gaps | ATESS | #11 – Improved Audio/Visual/Tactile
Effects | #9 – Mission Command Integration with AAR | |---|--|---| | #1 – Indirect Fire (mortar/artillery) | #12 – Improved Weapon Effects | #10 – Stimulate JISR Assets | | #2 – Real Time Casualty Assessment | TIS | #11 – LVC Simulation Interoperability | | #3 – Automated Damage Assessment | #1 – Near Real Time V/C/G
Interoperability | #12 – Maximize use of Organic Equipment | | #4 – Battlefield Realism | #2 – Mission Command
Interoperability | FASIT | | #5 - Indirect Fire (grenade/Precision) | #3 - Stimulate Rotational Assets | #1 - Trackless/Autonomous Targets | | #6 – Real Time Casualty Assessment (improved) | #4 - Interact within the Integrated Training Environment (ITE) | #2 - Dynamic Thermal Representations | | #7 – Casualty Tracking | #5 - Core Instrumentation Architecture | #3 - Improved Non-Contact Hit Sensors | | #8 – Counter Sniper | #6 – Real Time V/C/G Interoperability | #4 – Virtual Target Silhouettes on Live Fire Ranges | | #9 - Additional Weapon Effects | #7 – Integrated Testing/Training
Architecture | #5 - Cooperative ID Target Silhouettes | | #10 – Improved Battlefield Realism | #8 – JTE Interoperability | #6 - Threat Emitters | #### **Live Domain Force on Force** #### ATESS: Next Generation Force on Force Engagement Simulation System | Training Gap Example | Derived Capabilities | S&T Technologies | |--------------------------------------|---|---| | Indirect Fire
Visualization | Credible Audio/Visual CuesAccurate visual representationAccurate time of flight | Augmented Reality*Digital Terrain*Weapon OrientationPosition/Nav | | Real Time Casualty Assessment (RTCA) | Automated Casualty Cards Automated wound placement/severity Automated casualty tracking Casualty visualization Casualty treatment | Augmented Reality* Engagement and
Protective system
modeling Haptic/Tactile cues | | Battlefield Realism | Credible audio/visual/tactile cues for
all participants Real-time effects (directed energy,
non-lethal Battle damage assessments | Augmented Reality* Digital Terrain* Weapon Orientation Position/Nav Haptic/Tactile cues | ^{*} Requires synchronization/alignment with STE S&T investment ## **Live Domain Training Instrumentation** #### TIS: Instrumenting the Live Domain and supporting the future ITE | Training Gap Example | Derived Capabilities | S&T Technologies | |---|--|---| | Near Real Time V/C/G
Interoperability | 5 Second Latency Extended distances (45x50Km) 98% Accuracy Low, Mid, and Peak Engagements | Signal Modulation Processing Digital Terrain* Augmented Reality* Advanced Database | | Interact within the Integrated Training Environment (ITE) | V/C/G entities engaging/interacting with Live Player Live Players perceiving the V/C/G effects | Augmented Reality* Advanced Data Networks Advanced Database | | Real Time V/C/G
Interoperability | No Latency Extended distances (160x160Km) 99.5% Accuracy Low, Mid, and Peak (data flash floods) Engagements | Signal Modulation Processing Digital Terrain* Augmented Reality* Advanced Database | ^{*} Requires synchronization/alignment with STE S&T investment ## **Live Domain Force on Target** #### **FASIT: Next Generation of Live Fire Ranges** | Training Gap Example | Derived Capabilities | S&T Technologies | |-------------------------------|---|--| | Trackless Moving
Targets | Autonomous and Reactive Behaviors Vehicle and Infantry versions Live Fire survivable Operation on unimproved terrain | RoboticsDigital Terrain*Position/Nav | | Dynamic IR
Representation | Time and Posture Based Thermal/IR Align with ROC-V High Fidelity images Removed from Line of Fire | IR Projection | | Non-Contact Hit
Sensors | Supports Super-sonic, Trans-sonic, and sub-sonic munitions Detect angle of incident Round identification High Fidelity Point of Impact | Optic Ballistic Detection | | Virtual Target
Silhouettes | Silhouette Realism (appearance and behaviors)Free space | Augmented Reality*Digital Terrain*Al | ## **Current Live Domain S&T Investments** | Hybrid Laser | Laser and detector technology that can operate in both training and tactical wavelengths | |-----------------------------|---| | New 1550 wavelength MILES | Better penetration of obscurants, Laser continues past effective range of weapon, Eye Safe | | Laser Encoding and Decoding | Investigate modern encoding, error-correction methods and signal processing techniques | | Orientation sensor | Small Arms Direct fire solution | | GPS Denied tracking | Sensor fusion for dismounted tracking in GPS denied environments | | High Fidelity Terrain | Enable indirect (geo-pairing) weapon simulation with real-time dynamic updates | | Forward Observer AR | Artillery/Mortar augmentation of simulated indirect fire effects | | Mk19 Virtualization | Show virtual ballistic fly-out on see-through HMD correlated with azimuth/elevation orientation | | Trackless Moving Targets | Moving target that can be utilized on unimproved terrain, and that is capable of autonomous behaviors | | Dynamic Infrared Projector | Create accurate real-time dynamic thermal representations on target silhouettes or other mediums | | Non-Contact Hit Sensor | Detection field capable of determining ballistic penetration, its location, its velocity, and can accurately identify munitions types | | Video Compression | Compression software that automatically adapts to video scene content when encoding video for transmission | # **TSIS Live Training Panel** #### **COL Vince Malone** Project Manager Training Devices 18 June 2015 ## **Live Domain Technology Goals** - 1. Align with STE and support transition to FHTE-LS - 2. Evolve current training systems in support of ATESS/ TIS/FASIT Requirements - 3. Maintain Relevancy with evolving weapon systems, platforms and TTPs - 4. Evolve current training systems in support of Army Operational Environment and Force 2025 - 5. Reduce Total Life Cycle Costs Evolving the PM TRADE product line thru technology, architectures, standards, and commonality to achieve future capability needs